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We construct an approximate solution of the problem concerning the propaga- 

tion of a planar. front of a two-stage exothermic sequential chemical reaction 

in a gas, by the method of matched asymptotic expansions. As the parameter 
in the expansion we use the ratio of the adiabatic combustion temperature to 
the sum of the activation temperatures of both reactions. Depending on the 
values of the characteristic parameters of the problem, we consider several 

solutions, each with a different asymptotic behavior, corresponding to the vari- 
ous flame front propagation modes. The analytical results obtained are com- 
pared with numerical data available in the literature. 

1, Formulrtfon of ths problem, The stationary propagation of a planar 

front of a two-stage sequential exothermic reaction A 1 -+- As -+ A s in a gas can, 
subject to a number of simplifying assumptions, be described by the following equations 

and boundary conditions : 

(1.3) 
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x=-m, T=T_, a,=l, a,=0 (1.4) 

x = 00, a, = a2 = 0, dT I dx = 0 (1.5) 

Here 2: is the spatial coordinate, n, and (1a are the mass fractions of the substance 11 I 
and ..lzp, I’ is the tern perature, p is the density, m is the combustion mass rate, c is 
the heat capacity, A is the thermal conductivity, R is the gas constant, QI and Q2 

are thermal reaction effects, k, and k, are the factors premultiplying the exponential 
terms, Er and E, are the activation energies, and D is the diffusion coefficient of the 
substances A, and Ad,. We assume that the density and all the thermophysical charac- 
teristics of the medium maintain constant values. 

Solution of the problem (1.1) - (1.5) consists in determining the functions n, (.L): 

~2 (2) and T(x) , and of the eigenvalue of m. For a solution to exist it is sufficient 

that the constant .kr be set equal to zero over a small interval close to T_ [ 11. 
The problem (1.1) - (1.5) has the first integral 

h dT --= 
mc dx 

T_T++%++$]+ 
C 

I 
, T, - T_ 4 c-l (QI + &I 

(1.6) 

Taking (1.6) into account, we can represent the problem (1.1) - (1.5) in the following 

form : 
dr L(r-H) 

dz= z-oQH-((l-+JG 
(1.7) 

dq Lb--G) 
dz= z-ooH-(I--q)G 

(1.8) 

(1.9) 
dH ak (1 - d 

pdZ= z-oaqH-(l-eQ)G exp 
- P5E (If 4 

z+o 

dG - P (1 - GE) (1 + 4 

P’= 
(1 - Sk) @- - d 

z-q$L(l-QG exp 
(1.10) 

z+a 

r = 0, r=q=G=H=O (1.11) 

z = 1, rz-q=G=H=l (1.12) 

The variable Z, the unknown functions r, q, H, G, the eigenvalue p and the dimen- 
sionless constants L, GQ, uk, GE, $ and 6 are determined by the formulas 

T-T_ 
z=II’,-_ r = I - al, q 5= 1 - al - a2, L=-&- (1.13) 

pD dr 
G(z)=~--~~$ H(t)=r--mz, 

kl 
‘k=klfkn 

El Ql EI f Ez 

QE = E1-/-Ez’ OQ = Ql+Qz’ - P=RT, 

T- 2 

== T,-T_ ’ p = hp (k:; kz) 

From the conditions of nonnegativity of the concentration, the conversion sequence of 

the reagents, and from the condition of thermal gradient nonnegativity we have the 
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following inequalities : 

T - OQH - (1 - OQ)G> 0, r > H > 0, q> G> 0 (1.14) 

d>,r>q>,o 

To construct approximate analytical solutions of the problem (1.7) - (1.12) we apply 
the method of matched asymptotic expansions [Z, 31 choosing as the parameter of the 
expansion the small quantity p-l, and we use the results given in [4 - 81. 

From an analysis of Eqs. (1.7) - (1.10) for large values of P , we can show just as in 

[8] that the form of the asymptotic solutions differs substantially depending on the va- 
lues of the parameters Go, TV and oQ, and we can separate the following particular 
cases : 

l/z < '3Q < 1, (CQ + 0) (1 + OQ + 24-l< GE < l/2 

0 <bE<(aQ f a)(1 -t GQ f 25)-l 

a, Solution for 112<~~<1 or i< El/E,< 00. Wepartition 
the interval 0 & r < 1 into two regions: a small neighborhood of r = 1 (inner 
region) where we introduce the variable Z* = fi (1 - z), and the remaining portion 
of the interval (outer region). We limit ourselves to determining two terms of the ex- 

pansion of the eigenvalue in which we seek in the form 

P = (PO + B-1P1)B-2 exp (--Bo.E) (2.1) 

The corresponding expansions of the functions r, q, H and G in the inner and outer 
regions have the form 

r (z*) = r. (z*) + fklrl (z*> + B-“rz (+) (2.2) 

q (z*) = go (z*) + p-‘41 (r*) + B-“92 (T*) 

H (z*) = H, (.t*) + fPH, (z*), G (z*> = G, (z*) + fi-‘G,(t*~ 

r (z) = r. (z) + fJ-“rl W, 9 (r) = 90(4 + k241 (4 

H (z) = ZJ (.t., B), G = F (~7 B) 

Here, as well as in the following sections, the form of the expansions (2.1) and (2.2) is 

established from an analysis of the different versions and discarding of those which do 

not satisfy all the requirements set forth for a solution of the problem (1.1) - (1.12). 
The overbar is used to denote functions which, for an increase in p , decrease faster 
than any power of the small parameter p- l, for example, according to an exponential 

law. 
The equations for the successive terms of the expansion (2.1) and (2.2) are determ- 

ined by substituting (2.1) and (2.2) into (1.7) - (1.10) and then grouping and equating 
terms of the same order of smallness. The outer expansions must satisfy the boundary 
conditions (1.11) and the inner expansions - the conditions (1.12). In addition, the 
outer and inner expansions must be bound by the matching condition, which is expressed 
by requiring equivalence of asymptotic behavior of the inner and outer expansions, 
represented in the form of functions of the intermediate variable [ 3, 51. 

Substituting (2.1) and the inner expansions (2.2) into the Eqs. (1.7) - (1.10) and the 
boundary conditions (1.12). we obtain successively 
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dro dqo 
p=7 dz 

= 0, r-0 (0) = 40 (0) = 1, r’o (z*) = g, (z*) = 1 

rl(r*) = 41 (r*), r2 (r*) = QZ (r*) 
H,, (z*);= Go (IT*), N, (z*) = G1 (z*) 
dn 
d-j = - L, rl(0) = 0, rl (f*) = - Lt* 

dHo akrl - LSEZ* 
pop- = 1 _HHo exp-y 

I+6 Ho (0) = 1 

From (2.5) and (2.6) it follows that 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2 7) 

Here and in the sequel y (x) E 1 - (1 + x) exp (-x) 
Substituting (2.1) and the outer expansions (2.2) into (1.7) - (1.10) and (1. ll), we 

obtain 

dql I.q, drl Ix, - -z. - 

Jr T’ dt==T’ r1(0) = 41(O) - 0 

Hence 

40 (r) = C1rL, r. (z) = CzzL, q1 (z) = C,zL, rl :;) = C,+ 

Here and in the sequel constants of integration are denoted by c . 
From the matching of the inner and outer expansions we find 

PO = 2lJkL (1 + o)“oe-“, c, z c, L 1 

For the following terms of the expansion in the inner region we obtain: 

drz 
&-G = 

-L(r1 +T*) 
1 - II,, ’ 

r2 (0) = 0 

dH1 6)&T* r’ Hl c rg2 
d7*= p. (I -Ho) f - l-_Ho - 1 - Ho + & - 

E] exp(s), H,(O) = 0 

Hence 

r2 (z*) = G - 1) L (1 + v jl 6ET* 
I 

GE2 ( 1 l+a’ jl (5) = \ y” (t) tdt 

0” 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Hl (z*) = 

Matching, we find 

1 
1 &)J 

- bEX 

-ax sexp l_+G 

C s=c4= G - ‘k”,i’ + a)* j2 (oo), j2 (5) = jl (5) - q (2.14) 
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s 

;: -$[(~+b)(qs+1-L)-3], is(z)=(ir-ll(t)t”e-fdi 
; 

jz (co) = 2.92; j3 (a~) = 2.688 
The resulting formulas give an asymptotic solution of the problem for the particular case 

considered. We write the two-term expression for the combustion mass rate (2.1). (2.11), 

(2.14) in dimensional variables 
(2.15) 

m ~ ( Plc~Lh~\~“’ (XT+\ / T,. 1 i, 
,-j \li’l] \__I I 

_,_ RT+ r , T+ I? 344 
L 1 B1_ L’1’, - ‘I’_ \-. A)-33l}exp$ 

+ 
The expression (2.15) establishes an analytical dependence on the combustion rate on 
the characteristics of the process, including the dependence on the ratio of the coeffici- 

ents of thermal diffusivity and diffusion. It is evident that for the case considered the 
combustion rate is completely determined by the kinetic characteristics of the first re- 

action. Using the terminology of [9], it is natural to call this mode - the coalescence 
mode. 

8. solution for (GQ + (T) / (i -,- CQ + 20) <GE < l/z or (T_ + 
c-l&) / T+ < El / E, < 1. In this case we separate on the interval tl & z < 1 
two inner and two outer regions. The inner regions are small neighborhoods of the points 
T = 1 and T = rl” E (SE (1 + 0) (1 - (SE)-’ - a, OQ < Tlo < 1. The outer 
regions are the segments zi” < -t < 1 and 0 < T < TV’. We first consider the solution 
in the regions r - 1 and ri”< t < 1. We seek the expansion of the eigenvalue p, 
and the inner and outer expansions of the unknown functions in the form 

p = (PO -f ~-‘pl)~-” exp [-p(l - GE)] 

q (T*) = qo (‘6*) + p’s (T*) -t- fPq2 (T*) 

G (T*) = G, (T*> -f- frlG, (T*) 

(3.1) 

r (T*) = 1 f 7 (TG*, p>, H (t*) = 1 + iT (t*, p,, 7* = p (1 - 4 (3.2) 

q (7) = q’o (4 -t- fr2q’1 (47 G (4 = T: (‘6, /3) 

r (T) = 1 + p (T p), H (.c) = 1 + a (‘6, p) 

Substituting (3.1) and (3.2) into (1.7) - (1.10) and separating terms of the same order 
of smallness, and taking the boundary coditions into account, we can obtain in the inner 
region 

(3.3) 
Gl 

A= 

&.I’ 
- L (1 - UQ)_l, do) = 0, q1 ct*> = -L (1 - O/J)-%* (3.4) 

de 
dz*= 

-L [(I - OQ) ql+ r*] 

(1-aaQ)2(1 -Go) ' Q40) = 0 (3.5) 

(3.6) 
dGo 

CL adz*= 
(1 - Gk) 91 

(1 - oQ) (1 -Go) exp 

-(l-G&t* 

i+a ’ G, (0) = 1 

dG1 Gl , 
dz*= 

(1 -Sk) ,t.r* 
p,,(i-~~~)~(l-G~o) (i-~Q7;;*-Gu)--T I-G,, (3.7) 

(1 -SE) T*2 

(1 + a)” 
- $- exp 3 

-(i-cTa,)t* 
11-a ’ 

G1 (0) = 0 
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and in the outer region 

dgo’ L90' da' 
dz= 

Lq1’ 

T-Q ‘dt 
ZC--- 

z - 3$ 

qo’ = c5 (z - OQ)L, Ql’ = c, (a - SJL 

From (3.4) and (3.6) we find 

After matching of inner and outer expansions we obtain 

pa = 
,2L (1 - 68) (1 -j- a)? 
(1 -Go)’ (1 - GJ” 

Next, taking note of (3.4) and (3.9), we find from (3.5) 

(L-l)L(1+3)2 r (1--3E)T* -: 
h(f+?= (i-cJE)2(i44)2 111 i-+5 J 

Here the function jr is defined in (2.13). Integrating (3.7), we obtain 

(1 - ,,;;1 - Go) I z exp 

As a result of matching we have 

IL1 2 
-=1-C+ PO 

-[~(~+l-L)-3] 

cs = (1 - GE)2 (1 - cQ+L 
&--)LU+G)? j2(oo) 

(3.3) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Here the function ja is defined in (2.14). Using (3.1). (3. lo) and (3.13). we write the 
asymptotic tWO-term expression for the combustion rate in dimensional variables 

m=(+yy$+)($L){l+(~) x (3.14) 

I]% c2.344 - L) - 31) cxp$ 

In order to complete the construction of the solution it is necessary to determine the 

functions r, 9, if and G in the regions 0 ( T =/ T,“ and z - r,O. 
Variation of the functions r and fl from zero to unity occurs mainly in a narrow 

zone close to r = -cl0 _- (1 - ars)9sE (1 -f- 5) - 3 or T = I’,‘ -- T_JY~E,-~. 
where both sides of Eq. (1.9) become equal in order of magnitude. We seek solutions 
close to z = r1 O in the form of inner expansions 
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d”l*) = Qo (‘cl*) + p-‘ql;(Tl*) + p&l*) 
W,*) = G (TV*, p), TV* =-: p (T; - z) 

Since point r = ri” lies within the interval [(I, I], hence the e?ansions (3.15) must 
satisfy the matching conditions with the corresponding expansions in the two outer regi- 

ons. In the outer region ‘Cl’ > 0 the solution is determined by the formulas (3.2),(3.8), 

(3.10),(3.13), and 

In the outer region Z < ‘ct” just as in Sect. 2, 

r (4 = ro (4 -f- /Y-“Q (T), q (T) = qo (T) + fJ-*ql (z) (3.17) 

To (r) = C,-cL, rl (4 = C8TL, q. (r) = Co+, q1 (z) = Cl,+ 
H (4 = f(_c, p), G (4 = G (z, p) 

Substituting (3.15) into the system (1. ‘7) - (1.10) for r. (To*) and qo(Tl*j, we obtain 
the equations 

dr, / dz,* = dqo / d-c * I= 0 1 (3.18) 

The solution of Eq. (3.18), satisfying the matching condition with (3.16), has the form 

r(, (2i*) XL. 1, ‘IF (Q*) = (1 - o&L (71’ - a# (3.19) 

Matching of(3.19) with(3.17)yields 

c, = (t/)-L, C, = (‘c1”)-L (1 - a&L (TiO - CrQ)L 

Further, for rl(rl*), q1 (TV*) and Ho(~l*) we can obtain the equations 

Analyzing (3.20), we should take into account the fact that the value of the parameter 

PO has already been established earlier and is determined by the formula (3.10). We 
can prove that subject to the condition xi0 > oQ the system of equations (3.20) has a 
solution (unique) which satisfies the matching conditions with (3.16) and (3.17). Deter- 
mination of this solution is only possible by numerical integration. 

We can write a system of equations for rl (-cl*), Q, (.r,*) and HI (-cl*) analogous to 
(3.20). For determining the eigenvalue of the problem which is the principal aim of the 
study, there is no need in the solution of this system, as is also the case for the solution 
of the system (3.20). 

As the formula (3.14) shows, the combustion rate for the case considered is determined 
by the kinetic characteristics of the second reaction. The zones of the two consecutive 
stages of the chemical conversion are separated by a spatial and a temperature interval 
and are related by a heat flux. 



1002 V.S.Berman and Iu.S.Riazantsev 

4, Solution for o< crs<(u$cr*) (1 + aQ+2a)-’ or o< K,E;-I.<, 
(T’_ + C-Ql)!Z’+-‘. In this case the functions H (T) and r(t) . just as in Sect. 3, vary 
mainly in a narrow zone close to a = ail, outside of which, to within exponential terms, 
they are equal to zero and unity. However now the position of the point TV” is indepen- 
dent of (SE and is determined from the equation tr’ = oQ. The behavior of the func- 
tions G(T) and q (‘t) differs substantially from that in Sect. 3. The eigenvalue p is to 
be sought in the form 

P = (P0 -t- g-+,1) P-* exp 
-PGE(i -i-5) 

‘Q + c 
(4. I) 

In constructing the solution it is sufficient to consider three regions of distinct beha- 
vior for r, q, H and G. The outer region 0 & 'C < OQ, the inner region consisting 
of a small neighborhood of the point T = zr” = oQ , and the outer region 06) < T < 1. 

In the outer region 0 4 z < (TQ 

r (4 = r0 (r) + P-“rl (h 4 (r) = fi P) 

G(z) = G (~7 P), H (z) = H (t, P) 

(4.2) 

Substituting (4.2) into (1.7) - (1. lo), we can find 

7. (,c) = &,-CL + b-2 c,,+ (4.3) 

In the inner region ‘G _ oQ we introduce the variable Ti* = p (oQ - T) and we con- 

sider separately solutions for pi* > 0 (z < (TQ) and %i* < 0 (z. > era) 

bl* > 0, r (zI*) = r,- (T1*) + p-‘ri (ZI*) + Pm2r2 (%I*) (4.4) 

HO (rl*) = HT; (TI*) + P-lHi (TI*), _Q (~1”) = Y-(~I*, P) 

G (%I*) = G- (G*, P) 

TV* < 0, r(q*)= 1 + r+(q*,P), H(zl*) = 1 + H+(TI*, B) (4. S) 

CJ (zl*) = p-lql+ &I*) + q2+ (zl*, P), G(G*)=P-~G,+ (c*)+G2+(~1*. P) 
In constructing the solution in the inner region we take into account that the point 

‘G=(TQ, H=r=l, G=q=O is a singular point and we use the conditions [8] 

q* = 0, Ho- (0) 
ri (0) = r; (0) = 

In the outer region oQ < T < 1 

= ro- (0) = 1 

ET,(O) = ql+(0)= G,+(O) = 0 
(4.6) 

(4.7) 

Substituting (4.1). (4.4) into (1.7) - (1. lo), we find 

dro- 
0 

an- - L dHo- c$p- 
dZ1*= ‘dZ1*=5Q’ PodZ1* = ~~(1 - Ho-) exp 

- 63 (1 + 4 

(Q~ + CT)~ “* (4’ ‘) 

From (4.8), taking into account the matchimg conditions and (4.6). we have 

roe (T1*) = 1, 
- Ln* 

rl- (zl*) = - , 
OQ 
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Cl1 = QiL, Ho-(zl*) = 1 - p 
i 

6E (1 + 6) z1* 

@Q + a2 
1 

For the following terms of the expansions for ‘Q* > 0 we can obtain 

dra- - L (GQrl- + Xl*) dH1- QkLZl* 

dZ1+= G; (1 - Ho-) *dtl*= 
G; (1 - Ho) [ 

p1 r2- 
--_- 

t/h n- 
(4.10) 

t1* HI- 6E (I + O) 

1 

- GE (1 + a) rl* 

flQ (1 - Ho-) - r=F&=+ (SQ + 0)s 
21*2 exp 

@Q + a)” 

From (4. lo), taking note of (4.6) and the matching conditions we find 

We write the two-term formula for the combustion rate in dimensional variables 

(4.11) 

Substituting(4.1),(4.5) into (1.7)-(l.lO), we can obtain 

ql+ (r,*) = G,+ (T1*) = --(I - aQ)-‘z,* (4.12) 

The functions (4.12) satisfy the matching condition with (4.6). 
The formulas we have obtained above give a complete solution of the problem for 

the special case considered. From (4.11) it follows that the combustion rate is determ- 
ined here by the characteristics of the first reaction, the front of which propagates inde- 
dendently of the second reaction which takes place under induction conditions. Using 

the terminology of [9], we call this combustion mode a mode of separation. 

6. D!rcurrion of the r~aulta. The analysis presented here has enabled us 
toidentify the characteristic combustion modes and also the regions over which the 
parameters of the problem vary. The approximate analytical expressions obtained for 
the combustion rate and the distribution of the parameters completely define the depen- 

dence of the combustion rate and the wave structure on the physico-chemical charac- 
teristics of the burning mixture. In particular, the results include the special case L = 
1, for which we have the additional integral r = roQ + (1 - aQ)q. 

A comparison of our data with the numerical resuIts obtained in [lo, 111 for L = 1 



1004 V.S.Berman and Iu.S.Riazantsev 

shows good agreement. The characteristic combustion modes identified through an 
asymptotic examination, which were obtained numerically in [lo], show that the regions 
of their occurrence coincide, with acceptable accuracy, with those found in [lo]. The 

applicability of our results is not restricted to the case of ultimate large p. Similarly 

to [4 - 81, the data obtained describe the process with sufficient accuracy, also forvalues 
of p substantially less than ten. 

REFERENCES 

1. Zel’dovich, Ia. B. and Frank-Kamenetskii, D, A., Theory of ther- 

mal flame propagation. Zh. Fiz.Khim., Vol.12, Ngl, 1938. 

2. Van Dyke, M., Perturbation methods in fluid mechanics. Academic Press, 
New York, 1964. 

3. Cole, J. D., Perturbation methods in applied mathematics. Blaisdell Publ. Co., 

Waltham, Mass. , 196 8. 
4. Bush, W. B. and Fendell, F. E., Asymptotic analysis of laminar flame 

propagation for a general Lewis number. Combustion Sci. and Thechnology , 

Vol.l, pp.421-428. 1970. 
5. Fendell, F. E., Asymptotic analysis of premixed burning with large activation 

energy. J. Fluid Mech., Vol. 56, Pt. 1, 1972. 

6. Berman, V. S. and Riazantsev, Iu. S., Analysis of the problem of ther- 
minal flame propagation by the method of matched asymptotic expansions. 

PMM Vol. 36, Ng4, 1972. 
7. Berman, V. S. and Riazantsev, Iu. S., Application of the method of 

matched asymptotic expansions to the calculation of the stationary thermal 
propagation of the front of an exothermic reaction in a condensed medium. 

PMTF, Ne5, 1972. 
8. Berman, V. S. and Riazantsev, Iu. S., Asymptotic analysis of the sta- 

tionary propagation of the front of a two-stage sequential exothermic reaction 

in a condensed medium. PMTF, Npl, 1973. 
9. Merzhanov, A.G., Rumanov, E. N. and Khaikin, B. I., Multiphase 

combustion of condensed svstems. PMTF, N*6, 1972. 

10. Khaikin, B. I., Filonenko, A. K. and Khudiaev, S. I., Flame pro- 
pagation for flow in a gas of two sequential reactions. Fizika Goreniia i Vxry- 

va, Vol.4, Np4, 1968. 

11. Korman, H. E., Theoretical modeling of cool flames. Combustion Sci. and 
Technology, Vol. 2, pp. 149-159, 1970. 

Translated by J. F. H. 


